11 Case Study

This chapter will bring together all of the previous chapters showing how these essential concepts work

in practise through one example case study.

Objectives

By the end of this chapter you will see...

o how a problem description is turned into a UML model (as described in Chapter 6)

« an example of how typed collections can be effectively used, in particular you will see an
example of the use of sets and maps (as described in Chapter 7)

« an example of polymorphism and see how this enables programs to be extended simply
(as described in Chapter 4)

« asimple example of the use of inheritance and method overriding (as described in
Chapter 3)

 several example of UML diagrams (as described in Chapter 2)

« finally you will see the use of the Javadoc tool (as described in Chapter 8).

The complete working application, developed as described throughout this chapter, is available to

download for free as an exported Eclipse project.
Eclipse is freely available from www.eclipse.org.
This chapter consists of seventeen sections:-

1) The Problem

2) Preliminary Analysis

3) Further Analysis

4) Documenting the design using UML

5) Prototyping the Interface

6) Revising the Design to Accommodate Changing Requirements
7) Packaging the Classes

8) Programming the Message Classes

9) Programming the Client Classes

10) Creating and Handling UnknownClientException
11) Programming the Main classes

12) Programming the Interface

13) Using Test Driven Development and Extending the System

Download free eBooks at bookboon.com

http://bookboon.com/

Object Oriented Programming Using Java Case Study

14) Generating Javadoc

15) Running the System and Potential Compiler Warnings
16) The Finished System...

17) Summary

11.1 The Problem

User requirements analysis is a topic of significant importance to the software engineering community
and totally outside the scope of this text. The purpose of this chapter is not to show how requirements
are obtained but to show how a problem statement is modelled using OO principles and turned into a

complete working system once requirements are gathered.

The problem for which we will design a solution is “To develop a message management system for a

scrolling display board belonging to a small seaside retailer

For the purpose of this exercise we will assume preliminary requirements analysis has been performed
by interviewing the shop owner, and the workers who would use the system, and from this the following

textual description has been generated:-

Ijoined MITAS because e St
I wanted real responsibility www.discovermitas.com

8 .
¥ed

I was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen
% solve problems

MAERSK

Download free eBooks at bookboon.com

176 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Rory’s Readables is a small shop on the seafront selling a range of convenience goods, especially
books and magazines aimed at both the local and tourist trades. It has recently also become a
ticket agency for various local entertainment and transport providers.

Rory plans to acquire an LCD message display board mounted above the shopfront which can
show scrolling text messages. Rory intends to use this to advertise his own products and offers and
also to provide a message display service for fee-paying clients (e.g. private sales, lost and found,
staff required etc.)

Each client is given a unique ID string (e.g.“adams4”) and has a name, an address, a phone number
and an amount of credit in ‘credit units. A book of clients is maintained to which clients can be
added and in which we can look up a client by their ID.

Each message is for a specific client and comprises the text to be displayed, the number of days for
which it should be displayed and the cost of that message in units. No duplicate messages (i.e. the
same text for the same client) are permitted.

A set of current messages is to be maintained: new messages can be added, the message set
can be displayed on the display board, and at the end of each day a purge is performed - each
message has its days remaining decremented and its client’s credit reduced by the cost of the
message, and any messages which have expired or whose client has no more credit are deleted
from the message set.

The software is to be written before the display board is installed - therefore the connection to the
board should be via a well-defined interface and a dummy display board implemented in software
for testing purposes.

Given the description above this chapter describes how this problem may be analysed, modelled and a

solution programmed - thus demonstrating the techniques discussed throughout this book.

11.2 Preliminary Analysis

To perform a preliminary analysis of these requirement as (described in Chapter 6) we must...

o List the nouns and verbs

« Identify things outside the scope of the system

o Identify the synonyms

o Identify the potential classes, attributes and methods

« Identify any common characteristics

From reading this description we can see that the first paragraph is purely contextual and does not

describe anything specifically related to the software required. This has therefore been ignored.

Download free eBooks at bookboon.com

http://bookboon.com/

List of Nouns

and the following verbs:-

From the remaining paragraphs we can list the following nouns or noun phrases:-

LCD message display board credit unit message set

shopfront message display board

scrolling text message day days remaining

client book of clients client’s credit

ID string ID cost of message

name text software

address number of days connection

phone number cost of message (units) interface

credit set of current messages dummy display board
List of Verbs

acquire add (a client) expire

mount look up delete

show « permit (duplicates - NOT!) write (the software)
advertise + purge + install

give (a unique ID) « decrement + implement

display + reduce credit + test

Outside Scope of System

By identifying things outside the scope of the system we simplify the problem...

« Nouns:
- shopfront
- software
e Verbs:

- acquire, mount (the display board)
- advertise
- give (a unique ID)

- write, install, implement, test (the software)
The shopfront is not part of the system and it is not a part of the system to acquire and mount the

displayboard. The ID is assigned by the shop owner - not the system. And writing / installing the software

is the job of the programmer - it is not part of the system itself.

Download free eBooks at bookboon.com

http://bookboon.com/

Object Oriented Programming Using Java Case Study

Synonyms

The following are synonyms:-

» Nouns:
- LCD message display board = display board
- scrolling text message = message
- ID string = ID
- credit units = client’s credit = credit
- set of current messages = message set

- days = number of days = days remaining

o Verbs:
- show = display

By identifying synonyms we avoid needless duplication and confusion in the system.

“I studied
English for 16 P
years but...
...I finally

learned to

speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

"

Download free eBooks at bookboon.com &\S«\
179 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Potential Classes, Attributes and Methods

Nouns that describe significant entities for which we can identify properties i.e. data and behaviour i.e.

methods could become classes within the system. These include:-

o Client

o Message

« ClientBook

o MessageSet

« DisplayBoard

o DummyDisplayBoard

Nouns that are would be better as attributes of a class rather than becoming a class themselves:-

» For a client’:
- ID
- name
- address
- phone number

- credit

o For a ‘message™
- text
- days remaining

- cost of message

Each of these could be modelled as a class (which Client or Message would have as an object attribute),
but we decide that each of them is a sufficiently simple piece of information that there is no reason to
do so - each one can be a simple attribute (instance variable) of a primitive type (e.g. int) or library

class (e.g. String).
This is a design judgement - introducing classes for significant entities (Client, Message etc.) which have

a set of information and behaviour belonging to them, but not overloading the design with trivially simple

classes (e.g. credit which would just contain an ‘int’ instance variable together with a getter and setter!).

Download free eBooks at bookboon.com

http://bookboon.com/

Verbs describe candidate methods and we should be able to identify the classes these could belong to.

For instance:-

o For a ‘client’:
- decrease credit
< >
o For a ‘message’

- decrement days

The other verbs describing potential methods should also be listed:-

« display

o add (client to book)
 add (message to set)

+ lookUp (client in book)
o purge

o decrement

e expire

o delete

For each of these the associated class should be identified.

Common Characteristics

The final step in our preliminary analysis is to identify the common characteristics of classes and to

identify if these classes should these be linked in an inheritance hierarchy or linked by an interface.

Looking at the list of candidate classes provided we can see that two classes that share common

characteristics:-

« DisplayBoard
o DummyDisplayBoard

This either implies these classes should be linked within the system within an inheritance hierarchy or
via ‘an interface’(see section 4.5 Interfaces). In this case the clue is within the description “These will have

a ‘connection’ to the rest of the system via a ‘well-defined interface”
Ultimately our system should display messages in a real display board however it should first be tested

on a dummy display board. For this to work the dummy board must implement the same methods as

a real display board.

Download free eBooks at bookboon.com

http://bookboon.com/

Object Oriented Programming Using Java Case Study

Thus we should define a java ‘interface’ No common code would exist between the two classes — hence
why we are not putting these within an inheritance hierarchy. However the dummy board and the real
display board should both implement the methods defined via a common interface. When our system is
working we could replace the dummy board with the real board which implements the same methods.
As the connection with the dummy board is via the interface changing the dummy board with the real

display board should have no impact on our system.

From our preliminary analysis of the description we have identified candidate classes, interfaces, methods

and attributes. The methods and attributes can be associated with classes.
The classes are: -

o Client

o Message

« ClientBook

o MessageSet

« DisplayBoard

o DummyDisplayBoard

The Interface is:-

« DisplayBoardControl (a name we have made up)

Excellent Economics and Business programmes at:

/2 N
uy ' }
university of - AACSB
groningen b ACCREDITED

7 -
“The perfect start
of a successful,

_- . international career’
-l <
xR K HERE
sy o A CLIC

~ to discover why both socially
and academically the University

of Groningen is one of the best
places for a student to be

I

www.rug.nl/feb/education

Download free eBooks at bookboon.com

182

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

And the methods include:-

11.3

We could now document this proposed design using UML diagrams and program a system accordingly.
However before doing so it would be better to find any potential faults in our designs as fixing these
faults now would be quicker than fixing the faults after time has been spent programming the system.

Thus we should now refine our design using CRC cards and elaborate our classes.

CRC cards (see Chapter 6 section 6.10 and 6.11) allow us to role play various scenarios to check if our

designs look feasible before refining these designs and documenting them using UML class diagrams.

The two CRC cards below have been developed to describe the Client and ClientBook classes. The panel

on the left shows the class responsibilities and the panel on the right shows the classes they are expected

display

add (client to book)
add (message to set)
lookUp (client in book)
purge

decrement

expire

delete

Further Analysis

to collaborate with.

Download free eBooks at bookboon.com

| Client

Know name, address, phone

Know current credit

Decrease credit

ClientBook

Hold list of client IDs and
associated clients

Add a client

Look up a client

Client

Client

Client

http://bookboon.com/

We can now use these to roleplay, or test out, a scenario. In this case what happens when we get a new
client in the shop? Can this client be created and added to the client book?

To do this the system must perform the following actions:-
« create a new Client object
o pass it (along with the unique ID to associate with it) to the ClientBook object
o add the client to the client book.
By looking at the CRC cards we can see that:-
« the constructor for Client will be able to create a new client object
 The ClientBook has the capability to add a client and

o the ClientBook can hold the IDs associated with each client.

It would therefore appear that this part of the system will work at least in this respect — of course we

need to create CRC cards to describe every class and to test the system with a range of scenarios.

Below are three CRC cards to describe the Message and MessageSet classes and the DisplayBoardControl

interface.

Message

Know message text

Know days remaining

Decrement days remai MessageSet

Hold list of messages
Know if expired & Message

Add a message
Know cost & Message

Display messages DisplayBoardCtrl

Purge messages Message, ClientBook,
Client

DisplayBoardControl (Interface)

Load list of messages . .
(classes implementing

this interface
Run cycle of messages)

Download free eBooks at bookboon.com

http://bookboon.com/

Object Oriented Programming Using Java Case Study

What we want to ‘test’ here is that messages can be created, added to the MessageSet and displayed on

the display.

A point of requirements definition occurs here. There are two possibilities regarding the interface to

the display board:-
a) we load one message at a time, display it, then load the next message, and so on.
b) we load a collection of messages in one go, then tell the board to display them in sequence
which it does autonomously

The correct choice depends on finding out how the real display board actually works.

Note that (a) would mean a simple display board and more complexity for the “Display messages”

responsibility of MessageSet, while (b) implies the converse.

For this exercise we will assume the answer to this is (b), hence the responsibilities of scrolling through

a set of messages will be assigned to the DisplayBoardControl interface.

o REGENT’S

UNIVERSITY LONDON

Enhance your career opportunities

We offer practical, industry-relevant undergraduate and postgraduate degrees in central London

> Accounting and finance > Global banking and finance
> Business, management and leadership > Luxury brand management
> Oil and gas trade management > Media communications and marketing

Contact us to arrange a visit
Apply direct for January or September entry

T +44 (0)20 7487 7505 E exrel@regents.ac.uk W regents.ac.uk

Download free eBooks at bookboon.com &\S«\

185 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/10a6ab04-ac0d-4b6b-a275-a2d2009406fa

Looking at these CRC cards it would appear that we can
« Create a new message,
o Add this to the message set and
» Display these messages by invoking load ‘list of messages” and ‘run cycle of messages’

So this part of our design also seems to work.

The Message Purge Scenario

The final scenario that we want to run though here is the message purge scenario. At the end of the day
when messages have been displayed the remaining days of the message need to be decremented and the

message will need to be deleted if a) the message has run out of days or b) the client has run out of credit.

CRC cards for the classes involved in this have been drawn below...

Client

Know name, address, phone

Know current credit ClientBook

Hold list of client IDs and
associated clients

Decrease credit

Add a client Client

Look up a client Client

Message

Know message text

Know days remaining

Decrement days remai MessageSet

Download free eBooks at bookboon.com

Know if expired

Hold list of messages
Add a message
Display messages

Purge messages

Message
Message

DisplayBoardCtrl

Message, ClientBook,
Client

http://bookboon.com/

Activity 1

To purge the messages, the MessageBook cycles through its list of messages reducing the credit
for the client who ‘owns’ this message, decrementing the days remaining for that message and
deleting messages when appropriate.

Looking at the CRC cards above work through the following steps and identify any potential
problems with these classes:-

For each message
- tell the Message to decrement its days remaining and
- tell the relevant Client to decrease its credit
- ask the Message for its client ID
- ask the Message for its cost
- ask the ClientBook for the client with this ID
- tell the Client to decrease its credit by the cost of the message
- if either the Client’s credit is <= 0 or the Message is
now expired
delete the message from the list

Feedback 1

A problem becomes evident when we try to find the client associated with a message as Message
does not know the client ID.

We therefore need to add this responsibility to the Message class.

A revised design for the Message class is given below...

Message \

Know message text

Know clientID

Know days remaining

Decrement days
remaining

Know if expired

Know cost

By drawing out CRC cards for each class and interface and by role playing a range of scenarios we have
checked and revised our plans for the system - we can now refine these and document these using
UML diagrams.

Download free eBooks at bookboon.com

http://bookboon.com/

11.4 Documenting the design using UML

To fully document our designs we need to:-

o Determine in detail what attributes go in each class
o Determine how the classes are related and

o Put classes into appropriate packages.

Elaborating the Classes

Having worked through CRC scenarios we can make an initial assignment of instance variables and
methods among our classes, including some accessors and mutators whose necessity has become evident

(see diagram below).

Client ClientBook
name
address ?
phone
credit
decreaseCredit() addClient()
getClient()
Message M essageSet
clientiD
text ?
daysRemaining
cost
decrementDays() addM essage()
getText() display()
hasExpired() dailyPurge()
getCost()

<<interface>>
DisplayBoardControl

loadM essages()
run()

Download free eBooks at bookboon.com

http://bookboon.com/

Object Oriented Programming Using Java Case Study

We don’t know of any simple attributes which ClientBook and MessageSet will require, but they will
need to be associated with other classes so we still have some work to do there — hence the ?s (which

are not an official part of UML)!

Relationships Between Classes

We can now start to work out how these classes are related.
Starting with ClientBook and Client:- a ClientBook will record details of zero or more clients.

The navigability will be from ClientBook to client because the book “knows about” its Clients (in
implementation terms it will have references to them) but the individual Clients will not have references
back to the book.

The one-to-many relationship suggests that ClientBook will have a Collection (of some kind) of Clients.
The specification states that each Client will have a unique ID thus the collection will in fact be a map

where each entry is made up of a pair of values - in this case a clientID (a string) and a Client object.

v---v--------v---v---v---vv--vv--vvv--vv--v---vv--vv--vvv--vv-cv--co--coAlcateluLUcent @
www.alcatel-lucent.com/careers

l"

<

One generation’s transformation is the next’'s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

Download free eBooks at bookboon.com &\S«\

189 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

ClientBook
1
?
* addClient()

Client getChent()
name
address
phone
credit
decreaseCredit()

The relationship between MessageSet and Message is very similar to the relationship between ClientBook
and Clients.

Although MessageSet appears to have no attributes, its one-to-many association with Message again
implies an attribute which is a Collection type. The specification states that messages must be unique

but does not imply a key value is required thus a simple set will suffice.

MessageSet
1
?
* addMessage()
Message display()
dailyPurge()

clientID
text
daysRemaining
cost
decrementDays()
getText()
hasExpired()
getCost()

Download free eBooks at bookboon.com

http://bookboon.com/

Relating the Classes: MessageSet, ClientBook, and DisplayBoardControl

Because MessageSet is responsible for initiating the display of the messages on the display board it has

a dependency on a class implementing the DisplayBoardControl interface.

MessageSet also has a relationship with ClientBook because it needs to access and update Client

information when the daily purge is carried out. This is shown below.

MessageSet
?
1 1
/ addMessage()
//' display()
/d dailyPurge()
//
/
/
4
A !
<<interface>> ClientBook
DisplayBoardControl
?
loadMessages()
run()
addClient()
getClient()

Relating the Classes Overall

The diagram below shows how all of these classes are related. An additional class, DummyBoard, has

been included which will implement the DisplayBoardControl interface for testing purposes.

Since DummyBoard will have a collection of messages loaded it also has a one-to-many relationship

with Message.

Download free eBooks at bookboon.com

http://bookboon.com/

Object Oriented Programming Using Java Case Study

%
ClientBook ’-1”/__% Client
1
1 % Message
MessageSet ;
1
DisplayBoardControl DummyBoard

Note the use of the concise “ball and socket” notation for the DisplayBoardControl interface.

/

Leadiny
% Maastricht University o Learnin:

Join the best at

- 33" place Financial Times worldwide ranking: MSc

the MaastriCht U niverSity International Business

+ 1% place: MSc International Business

School of Business and - 1%t place: MSc Financial Economics

. 2" place: MSc Management of Learning

Economics! 2" place: MSc Economics

2" place: MSc Econometrics and Operations Research
- 2" place:MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

Download free eBooks at bookboon.com &\5«\

192

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

While the classes above will form the heart of the system two additional classes will be required to drive

and manage the system as a whole.

One of these ‘GUImain’ will have the ‘main’ method required to run the system and this will invoke a

graphical user interface through which the user will interact with the system adding clients, messages etc.

The other additional class ‘Manager’ will control additional functionality not specified by the shop owner
but implicitly required - for instance at the end of the day the details of the ClientBook and MessageSet
will need to be saved to file. This data will need to be restored next time the system is run as the shop

owner will clearly not want to enter details of all the clients every time they run the program.

11.5 Prototyping the Interface

While methods for gathering user requirements is beyond the scope of this text — it is always a good idea

to prototype an interface and get feedback on this before proceeding with the development.

The figure below shows the proposed interface for this system:-

MessageManager v7
NEW CLIENTS NEW MESSAGES Find Client
Increase Credit

Client ID Delete Client
Name Client ID
Address Display Message
Phone Purge Messages
Credits

Add Client Add Message Save and Exit

This is made up of three areas. From left to right these are a) an area for adding new clients, b) and area

for adding new messages and c) an area for buttons dedicated to other essential operations.
Each of these three areas will be implemented using a JPanel placed within one larger JFrame.

11.6 Revising the Design to Accommodate Changing Requirements

Changing software requirements are a fact of life and OO programming is intended to help software
engineers make program adaptations easier, quicker, cheaper and with less risk of generating errors. The
principles of inheritance, method overriding and polymorphism are essential OO features that help in

this manner.

Download free eBooks at bookboon.com

http://bookboon.com/

In this project when gaining feedback from the shop owner on the prototype interface they comment

that they generally like the interface but that they have an additional system requirement:-

Some messages are ‘urgent messages. These should be highlighted on the display by placing three stars before and
after the message and the cost of these messages will be twice the cost of ordinary messages. Other than that urgent
messages are just like ordinary messages.

Modifying the interface design to accommodate this change is easy — we can either:-
o create an new panel to accommodate the creation of ‘Urgent Messages’ or
« since the data required is identical to normal messages we can just add an extra button to
the middle panel.

But how will these extra requirements impact on the underlying classes within the system?

If OO principles work implementing this additional requirement should be relatively simple. Firstly there

is clearly a strong relationship between a ‘Message’ and an ‘Urgent Message’

If both classes had some unique features but there was a significant overlap in functionality we could

introduce an inheritance hierarchy to deal with this:-

<<abstract>>

Message

OrdinaryMessage UrgentMessage

However in this case there are no unique features of an ordinary message — messages have an associated
cost, the cost and text can be obtained and new messages can be created. All this is true for urgent
messages. An urgent message is just the same as an ordinary message where the text and the cost has
been changed slightly. Thus UrgentMessage is a type of Message and can inherit ALL of the features of

Message with the cost and text methods being overridden.
Thus the Message and UrgentMessage classes are be related as shown below, with UrgentMessage

inheriting all of the values and methods associated with Message but overriding getCost() and getText(0

methods to reflect the different cost and text associated with urgent messages.

Download free eBooks at bookboon.com

http://bookboon.com/

Object Oriented Programming Using Java

Case Study

Message

clientID

text
daysRemaining
cost

decrementDays()
getText()
hasExpired()
getCost()

UrgentMessage

cost

getText()
getCost()

a
S
g
17}
=
S
=
S
2
1}
1=
o
(©]
&0
5}
g
2
3]
D

Download free eBooks at bookboon.com

195

> Apply now

REDEFINE YOUR FUTURE

AXA GLOBAL GRADUATE
PROGRAM 2014

redefining / standards M

N

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/8deaf1ec-df70-474a-b2cd-a29d00a7bfa5

A revised class diagram is below. But how will this change impact upon other parts of the system?

*

ClientBook ’1'///,_} Client

1 * Message

l/%

MessageSet . \
UrgentMessage
.\ 1
DisplayBoardControl

DummyBoard

Thanks to the operation of polymorphism this change will have no impact at all on any other part of

the system!

Looking at the class diagram above we can see that MessageSet keeps and manages a set of Messages
(DummyBoard also keeps a set of messages — once they have been uploaded for display). But what about

UrgentMessages?

Urgent messages are just a specific type of message. When the addMessage() method is invoked within
MessageSet it requires an object of type Message i.e. a message to be added - but an object of the subtype
UrgentMessage is still a ‘Message’ so the addMessage() method would accept an UrgentMessage object.

Therefore, without making any changes at all to MessageSet, MessageSet can maintain a set of all messages

to be displayed (both urgent and ordinary)!

Furthermore when the dailyPurge() method is invoked it invokes the getCost() method on a Message
object so that the client can be charged for that message. At run time the JVM will determine whether
the object is of type Message or of type UrgentMessage and it will invoke the correct version of the

getCost() method - remember this was overridden in UrgentMessage. This is polymorphism in action!

Download free eBooks at bookboon.com

http://bookboon.com/

Object Oriented Programming Using Java Case Study

MessageSet requires messages but, thanks to the application of polymorphism and method overriding,
MessageSet will happily deal with any Message subtype as though it were a Message object. If later we
decided to create new message types (such as a Christmas message) MessageSet would be able to deal

with these as well without changing a single line of code!

Thus in this application we are able to extend the system to add the facility for urgent messages by adding

only one class and making one small change to the interface.

Without the application of polymorphism we would need to have made additional changes to other

parts of the system — namely MessageSet and DummyBoard.
Object Orientation has enabled to the system to be extended with minimal effort!

11.7 Packaging the Classes

Large programs should be segmented into packages as this provides an appropriate level of encapsulation

and access control (as described in Chapter 2).

The system being used here to demonstrate the theory in this textbook hardly qualifies as large —

nonetheless it has been decided to package related classes together as shown below.

Empowering People.
Improving Business.

Bl Norwegian Business School is one of Europe’s
largest business schools welcoming more than 20,000
students. Our programmes provide a stimulating
and multi-cultural leaming environment with an
international outlook ultimately providing students
with professional skills to meet the increasing needs
of businesses.

’ll stfatedic Marke P
§ Management

e ‘ernatlonalks
- inancial Busine i
conomics i Semenan

» L.

Leadership &8
; 1 Organisationg
Shipping Psyclhaloay

N

Bl offers four different two-year, full-time Master of
Science (MSc) programmes that are taught entirely in
English and have been designed to provide professional
skills to meet the increasing need of businesses. The
MSc programmes provide a stimulating and multi-

cultural leaming environment to give you the best
platform to launch into your career.

i __age ept i

I|I) (]
/ | h * MSc in Business
* MSc in Financial Economics

* MSc in Strategic Marketing Management
* M5Sc in Leadership and Organisational Psychology

NORWEGIAN .
BUSINESS SCHOOL ~ ~ E9U5 wwwbiedu/master

Download free eBooks at bookboon.com &\S«\

197 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

main
message
GUImain
MessageSet
Manager = |TTTTTTTTTTS > Message
UrgentMessage
(I y
S / A
I AN y I
1 N / 1
1 ~ / 1
I X 1
1 AN I
1 / N\ 1
1 ’ N I
1
" 1
[
1
[

Vs
client 2 ¥ A
display
ClientBook
Client DisplayBoardControl
DummyBoard

This diagram shows the four packages used and the classes within each package. Also shown are
associations between the packages. Not surprisingly the main package, which houses the system interface,
is associated with all of the other packages - this is because the interface invokes functionality throughout

the system.

Having completed the design, and accommodated changing requirements, we can start implementing

the system. This will be done in two phases:-

In the first phase a basic system will be implemented which will allow messages and clients to be created,

the details written to file and messages to be displayed.
In the second phase the system functionality will be extended to allow clients to be deleted and to

allow their credit to be increased. This will be done in a way to allow the demonstration of Test Driven

Development (as described in Chapter 10).

Download free eBooks at bookboon.com

http://bookboon.com/

Object Oriented Programming Using Java Case Study

11.8 Programming the Message Classes

Message, UrgentMessage and MessageSet are relatively straight forward to program.

Message has various instance variables (Strings: clientID, text and int: daysRemaining). It has a constructor

to initialize the instance variables and it has the following methods:-

void decrementDays ()
boolean hasExpired()
String getClientID()
int getCost()

String getText ()

The Manager class will need to store the ClientBook and MessageSet objects to a file. To do this all Client
objects and Message objects will also need to be stored hence these classes (including the Message class)

will need to implement the Serializable interface.

Finally the requirements state that “No duplicate messages (i.e. the same text for the same client)

are permitted”

Therefore Message must override the equals() and hashCode() methods to ensure that duplicates will

not be permitted when the messages are stored in a Set.

Need help with your
dissertation?

Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

Get Help Now

Go to www.helpmyassignment.co.uk for more info E/Helpmyassignment

Download free eBooks at bookboon.com X\(‘ :\

199 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

The complete code for this class is given below — though comments have been excluded for the sake

of brevity.
package nessages;
i mport java.io.Serializable;
public class Message inplenments Serializable
{
final int COST=1;
private String clientlD
private String messageText;
private int daysRemnai ning;
public Message (String pdientID, String pText,
i nt pDaysRenai ni ng) {
clientID = pdientlD
messageText = pText;
daysRemai ni ng = pDaysRenmai ni ng;
}
public void decrenent Days() {
daysRemai ni ng- - ;
}
public bool ean hasExpired() {
return (daysRemai ning == 0);
}
public String getdientID() {
return clientlD
}
public String getText () {
return nmessageText;
}
public int getCost() {
return COST;
}
public int hashCode () {
return (clientlD + nessageText). hashCode();
}
public bool ean equals (Object pQher) {
Message ot herMsg = (Message) pOQt her;
return (clientlD. equal s(otherMsg.clientlD) &&
nmessageText . equal s(ot her Msg. nessageText));
}
public String toString(){
return ("Message text: " + nessageText +
"\nCient: " + clientlD +
"\nDays left: " + daysRemmi ning);
}
}

Download free eBooks at bookboon.com

http://bookboon.com/

The UrgentMessage class is extremely short and sweet as it inherits almost all of its functionality

from Message:-

package nessages;
public class Urgent Message extends Message
{
final int COST=2;
public UrgentMessage (String pdientID, String pText,
i nt pDaysRenai ni ng) {
super (pClientl D, pText, pDaysRenaining);
}
public String getText () {
return "*** "“+super.getText()+ " ***";
}
public int getCost() {
return COST;
}
}

The MessageSet class has a one-to-many relationship with Message. This implies a collection type and
the fact that duplicate massages are not allowed (at least for the same client) implies the collection
should be a Set.

The MessageSet class requires an instance variable to hold the set of messages and also one to reference

a ClientBook - as it needs access to the clients when performing a daily purge.

A constructor is required to assign a new HashSet() to messageSet and to initialize clientBook to a

parameter. The following methods are also required:-
void addMessage(Message pMsgToAdd)

void display(DisplayBoardControl db)
void dailyPurge()

Download free eBooks at bookboon.com

http://bookboon.com/

Some of the code from this class is shown below:-

package messages;

i mport

public class MessageSet inplenents Serializable

{

private Set<Message> nessageSet;
private CientBook clients;

public MessageSet (dientBook pdients){
clients = pdients;
nessageSet = new HashSet <Message>();

}

public void addMessage(Message pMsgToAdd) {
nessageSet . add(pMsgToAdd) ;

}
public void display(D splayBoardControl db)
{
db. | oadMessages(nmessageSet) ;
db. run();
}

public void dailyPurge() {

/1 code omtted here

}
public void saveToFil e(bj ect Qut put Stream oos) {
try {
00s. writeObject(this);
} catch (I OException ioe) {
JOpt i onPane. showMessageDi al og(nul |, ""+ioe);
}
}

static public MessageSet readFrontil e(QojectlnputStream ois) {
MessageSet cb = null;

try {
cb = (MessageSet) ois.readoject();

} catch (I OException ioe) {
JOpt i onPane. showvessageDi al og(nul |,
Systemexit(1l);

} catch (d assNot FoundException cnfe) {
JOpt i onPane. showMessageDi al og(nul I, ""+cnfe);
Systemexit(1l);

+i oe) ;

}

return cb;

}
}

[mY | Af R L + | P12N
Dowimnmouaud 1T T TDUURS AU DUURDUOUTT.CUTTT

http://bookboon.com/

Object Oriented Programming Using Java Case Study

The code above shows the creation of a typed collection of ‘Message’ and methods to add and

display messages.

The method to display messages requires and object of type DisplayBoardControl to be passed as
a parameter. Initially a DummyBoard object will be provided however when a real display board is
purchased then this object will replace the DummyBoard object. This will have no impact on the code
within the display() method as both objects are of the more general type DisplayBoardControl. This is
another example of the application of polymorphism.

Two additional methods have been created saveToFile() and readFromFile() which read and write the

entire set of messages to file using the technique of object serialisation.

(]
B By 2020, wind could provide one-tenth of our planet's

ra I n p O W e r electricity needs. Already today, SKF's innovative know-

how is crucial to running a large proportion of the

world's wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
jcation. We help make it more economical to create

Therefore we'need the best employees who can

eet this challenge!

Tﬂf Power of Knowledge Engineering

'-r?a-.i

Plug into The Power of Knowl@ ngineering.
Visit us at www.skf.com/knowledgy.

CRESEE

Download free eBooks at bookboon.com

203 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

The dailyPurge() method was excluded from the code above so we could concentrate on this

method below:-

public void dailyPurge() {
Client client;
/1 loop through all current nessages
for (Message nsg: nessageSet) {

/1 deduct 1 from days remmining for nmessage
nsg. decr errent Days() ;

try

{
/1 decrease client credit for this nmessage
client = clients.getCient(nsg.getdientlD());
client.decreaseCredit(nsg.getCost());
/1 if nmessage expired or client out of credit renove it
if (nmeg. hasExpired() || client.getCredit() <= 0) {

nessageSet . renove(nsq) ;

}

}

catch (Unknownd i ent Exception uce) {
JOpt i onPane. showMessageDi al og(nul |,
"I NTERNAL ERROR I N MessageSet. Purge()\n" +
"Exception details: " + uce +
"\ nMesssage details:\n" + nsQ);

if (nmsg.hasExpired()) {
nessageSet . r enove(nsg) ;
}

The dailyPurge() method performs the following actions:-
For each message

Decrement the days remaining for that message

Find the client who paid for that message

Find the cost of the message and deduct this from that clients credit
If the message has expired or if the client has run out of credit then

Remove the message

Note it is possible that a client could not be found - hence the try catch block. This will be discussed
in the next section.

Download free eBooks at bookboon.com

http://bookboon.com/

11.9 Programming the Client Classes

Programming the Client class is very similar to programming the Message class and is not shown here.

Programming the ClientBook class is also very similar to programming MessageSet, and most of this

class is omitted here however there are two significant differences:-

o All clients have a clientID so ClientBook uses a Map instead of a Set.
o The method getClient() could fail if no client exists with the specified clientID. We need to

build in protection in case a client cannot be found.

package clients;

i mport
public class dientBook inplenents Serializable {

private Map<String,dient> clientMp;

public dientBook() {
clientMap = new HashMap<String, dient>();

}

public void addClient(String pdientlD dient pNewCient) {
clientMap. put(pCientlD, pNewCient);

}

public Cient getCient(String pdientlD)
/1 details onmitted

}

public void saveToFil e(Ooj ect Qut put Stream oos) {
/1 details onmitted

}

static public dientBook readFrontil e(ojectlnputStream ois) {
/1 details onmitted

}

The code above shows the creation of the Map and the other methods required by the ClientBook class.

Download free eBooks at bookboon.com

http://bookboon.com/

Object Oriented Programming Using Java Case Study

11.10 Creating and Handling UnknownClientException

The getClient() method in the ClientBook class will return a null value if no client exists with the
specified ID. In such a case during the daily purge our program will crash as we try to invoke the
decreaseCredit() method without having a client object to invoke this method on (it will crash with a

NullPointerException).
We therefore need to build in protection against this eventuality. To protect against this we need to:-
« Create a new kind of exception (as described in Chapter 9) called UnknownClientException

o tell the ClientBook class to throw this exception if a client is not found

o catch and deal with this exception in the dailyPurge() method.

The first step is simple and not shown here.

“I studied
English for 16 p
years but... -
...I finally
learned to
speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

e—)

Download free eBooks at bookboon.com

206 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Telling the getClient() method and deleteClient() method to generate this exception is relatively straight

forward (as shown below):-

public Cient getCient(String pdientlD)
t hrows Unknownd i ent Exception {
Cient founddient;

founddient = clientMap.get(pdientlD);

if (foundCient !'= null) {
return founddient;
} else {
t hrow new Unknownd i ent Excepti on(
"Client Book.getClient():
unknown client ID:" + pdientlD);

Firstly we must tell the compiler that this method can generate an exception. Then, under the appropriate
condition, we invoke the constructor of the exception using the keyword ‘new’ and pass a string message

required by the constructor. The object returned by the constructor is then ‘thrown’

To be helpful the string specifies the method where this exception was generated from and the clientID

for which a client was not found.

The compiler will then ensure that the programmer writing the dailyPurge() method catches this

exception — hopefully they will then deal with it to prevent a crash situation.

The final step is to catch and deal with UnkownClientException within the dailyPurge() method - as

shown in section 11.8 (Programming the Message Classes).

If a client does not exist we may could remove the message. However in this case we have chosen to be

more cautious since we simply don’t know how we have come to have an ‘unowned’ message.

We have therefore decided that if the message has not expired we will not to take any action other than

to report the error. The message will continue to be displayed (even without having a client to charge!).

If an unowned message has expired we of course still need to remove it from the display set.

Download free eBooks at bookboon.com

http://bookboon.com/

11.11 Programming the Main classes

There are two classes, not shown on the class diagrams given previously, that ‘drive’ the system.
‘Manager’ is the main class that manages the system. It performs the following functions:-

« it has a permanent reference to the client book and message set.

o it sets up the data file

o it defines what happens when the system starts and

o it defines what happens when the system shuts down

o finally it has getClientBook() and getMessageSet() methods so the other parts of the system

can access the clientbook and message set.

The startup() method is shown below:-

public void startUp() {

try {
FileInputStream fis = new FileInputStream(MMS DATA FILE);

ObjectInputStream ois = new ObjectInputStream(fis);

cb d i ent Book. readFrontFi |l e(0i s);
ns MessageSet . readFrontil e(oi s);
fis.close () ;

} catch (FileNot FoundException fnfe) {

JOpt i onPane. showMessageDi al og(nul I, "No existing
client/nmessage data found");

cb = new dientBook();
ms = new MessageSet (ch);

} catch (1 OException ioe) {
JOpt i onPane. showMessageDi al og(nul I,
Systemexit(1l);

+i oe) ;

The startup() method tries to setup an Object Input stream from which it then tries to reconstruct

ClientBook and MessageSet objects.

It has two catch blocks. The first will catch a FileNotFoundException - this will occur if the file of data
cannot be found e.g. the first time this program is run. In such a case the system will create a new and

empty ClientBook object and a new MessageSet object.

The second catch block will catch any other IO error and in this case will then exit the program.

Download free eBooks at bookboon.com

http://bookboon.com/

Object Oriented Programming Using Java Case Study

11.12 Programming the Interface

The other driving class is GUImain. This has a main() method which invokes the createGUI() method.
This creates three JPanels and adds buttons, text boxes and labels to these according to the preliminary

design. A Grid layout manager was applied to these JPanels (as described in section 10 of chapter 8).
The GUImain class also defines action listeners for each of the buttons on the GUI.

Shown below is the action listener associated with the FindClient button:

private class FinddientListener inplenents ActionListener {
public void actionPerforned(Acti onEvent arg0) {
String id = JOptionPane. show nput Di al og(nul |,
"Enter client 1D");
if (id = null) id=""; //in case Cancel pressed

try {
JOpt i onPane. showvessageDi al og(nul |,

manager . get Cl i ent Book().getdient(id).toString());
}
catch (Unknownd i ent Excepti on uke){
JOpt i onPane. showvessageDi al og(nul |,
"No such client");

Voiero Tovcks | Rewanr Toscks 1 ‘ﬂTill:I! 1 Voo Buses | ‘l‘uﬂum&m]l'Ium 1 VowoAero | Wooro IT

Voo Fawcy Seances | Vowo 28 | Vowo Powemmam | Vowo Pasrs | Vowo Tecswouosy | Vowokoammes | Busimess Ane, Ase

Download free eBooks at bookboon.com \(‘ t\

209 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

This action listener does the following:-

o It opens a dialog box to ask the user for a clients ID,

o If cancel is pressed it replaces the null returned with an ID of .

« It then asks the manager object to return the client book.

o On the client book object it invokes the getClient() method passing the ID as a parameter

o Assuming a client is returned the toString() method is then invoked to get a string
representation of the client and this is passed as a parameter to the showMessageDialog()
method (which displays the details of the client with that ID).

o If getClient() fails to find a client this method will throw an UnknownclientException - this

will be caught here and an appropriate message will be displayed.

11.13 Using Test Driven Development and Extending the System

Now we have a working system — though two important methods have yet to be created. We need
a method to increase a clients credit — this should be placed within the Client class. We also need a
method to delete a client - as this means removing them from the client book this should be placed in

the ClientBook class.

It has been decided to use Test Driven Development to extend the system by providing this functionality

(as discussed in Chapter 10 Agile Programming).

In TDD we must:-

1) Write tests
2) Set up automated unit testing, which fails because the classes haven't yet been written!

3) Write the classes so the tests pass

After creating these methods we must then adapt the interface so that this will invoke these methods.

Download free eBooks at bookboon.com

http://bookboon.com/

Two test cases are given below:-

public void testlincreaseCredit() {
Client ¢ = new dient("Sinon", "Room 217", "x2756", 10);
c.increaseCredit(10);
assert Equal s(20, c.getCredit());

}

public void testDeletedient() {
ClientBook cb = new O ientBook();
Client ¢ = new dient("Sinon", "Room 217", "x2756", 10);
cb.addd ient("sk", c);
try {
cb.deletedient("sk");
} catch (UnknownCl i ent Exception uce) {

fail ();
}
try {
c = cb.getdient("sk");
fail ();
} catch (UnknownCl i ent Exception uce) {
}
}

The first of these creates a client with 10 units of credit, adds an additional 10 units of credit and then

checks that this client has 20 units of credit.

One test does alone not sufficiently prove that the increaseCredit() method will always work so we made

need to define additional tests.

The second test creates and empty client book, creates a client, adds the client to the client book and
tries to delete this client — if at this point an unknownClientexception is generated then we know there
is a problem. Once deleted we try to delete the object for a second time and this should fail as an
unkownClientException should now be generated. If an exception is not generated at this point then
the class is flawed and the test should ‘fail.

Having created test cases these will generate complier errors as the methods increaseCredit() and

deleteClient() do not exist.

We must now create the methods and revise them until these tests pass.

The increaseCredit() method is given below...

public void increaseCredit(int pExtraCredit) {
credit = credit + pExtraCredit;

}

Download free eBooks at bookboon.com

http://bookboon.com/

Theory suggest that TDD leads to simple code.

In this case by focusing our minds on what the increaseCredit() method needs to achieve we reduce the
risk of over complicating the code. Of course we may need a range of test case to make sure the method

has all of the essential functionality it needs.

11.14 Generating Javadoc

Documentation is essential and can be generated automatically (as described in Chapter 8 - Java

Development Tools) assuming appropriate comments have been placed in the code.

Javadoc comments have been placed in the code to describe all classes, all constructors and all methods.

All parameters and return values have been described.

Three of the comments taken from the Client class are shown below:-

/***

* A custonmer of the nessage display service
* @ut hor Sinon Kendal
* @ersion 1.0 (26 June 2009)

***/

public class Cient inplenents Serializable {
l'ines nissing

/**
* Constructor
* @aram pNarme name of client
* @aram pAddress client's address
* @aram pPhone client's phone nunber
* @aram pCredit initial credit for client
*/
public dient(String pNane, String pAddress, String pPhone,
int pCredit) {

l'ines nissing

/**

* return the client's current credit
*

* @eturn credit units renaining
*/
public int getCredit() {

l'ines nissing

Download free eBooks at bookboon.com

http://bookboon.com/

Once Javadoc style comments have been placed throughout the code initiating the javadoc tool will
generate a set of web pages to describe the system (in Eclipse this is done by selecting Project | Generate

Javadoc menu items).

The following picture shows part of the Java documentation describing the UrgentMessage class:-

All Classes Constructor Detail
chk.ages UrgentMessage
clients
w [7 public UrgentMessage(java.lang.5tring pClientID,
@ java.lang.3tring pText,
Messades int pDaysRemaining)
Constructor
Parameters:
All Classes pClientID - string uniquely identifying client
Client pText - text of message to be displaved
ClientBook pDaysRemaining - number of days before message expires
DisplayBoardControl
DummyBoard =
GUImain Method Detail
Manager =
Message
MessageSet getText
UnknownClientException

UrgentMessage public java.lang.String getText()
Get text of message

Overrides:
getText in class Messags
Returns:
text of message awith stars added before and after

getCost
public int getCost()

Get cost of message

11.15 Running the System and Potential Compiler Warnings

The complete program, as described in this chapter, is available with this textbook as an exported Eclipse

project. To run this program:-

« Download the file ‘OOP Using Java’

« Import it into Eclipse by selecting File | Import | Existing Project Into Workspace | Select
Archive File ‘OOP Using Java and then select the Message Management System project that
is inside the archive file.

« Using the Eclipse package explorer window, right click on the GUImain class which is inside

the package ‘main’ and select ‘Run as Java application’

In this exported file are all classes, methods and test cases discussed in this chapter along with the
Javadoc generated by the Javadoc tool. To view the Javadoc go to the .doc folder and double click on
the index.html page.

Download free eBooks at bookboon.com

http://bookboon.com/

Object Oriented Programming Using Java

Case Study

When examining this program, depending upon your compiler settings, you may notice some warning

messages. One in particular that you are likely to see refers to the serializable classes (MessageSet, Message

etc) as I have not given them version numbers.

These warnings should have no impact on running the system and can be switched of if required by

going to Window | Preferences |Compiler | Errors & Warnings and selecting ignore for those warnings

you wish to suppress (as shown below).

= Preferences

—i|u=]

type filter text Errorsfwarnings

i~ General

Ant

il Help
Install/Update

Indirect access to static memben

Undocumented empty block:

Building Method with a constructor narme:
i Errors/Warning i
l i Parameter assignment:
i--Javadoc
‘. Task Tags
- Debug
Editor ! Potential programming problems

i ‘- Properties Files Edil
- Plug-in Development
Run/Debug

Gl oy

Cenfigure Project Specific Settings..,

PR T SLAOUIL GLLESS LU SLALIL FHIEH ST,

Unqualified access to instance field:

Access to a non-accessible member of an enclosing type: | Ignore |

MNon-externalized strings (missing/unused SNON-NLSS tag): |Ignore =

Serializable class without serialVersionUID:
Assignment has no effect (e.g. % = x)
Possible accidental boolean assignment (e.g. if (a = b)):

‘finally' does not complete normally:

eyt
Ignore =
Ignore =

|Warr1ing ¥, |

Ignore -
Ignore =
!

[Restore Defaults | l Apply J

ok |

Cancel |

11.16 The Finished System...

The following screen shots show the finished system.

Firstly the main interface window - this is very similar to the design. The only change was one extra

button that was added to allow a message to be designated as an urgent message.

Download free eBooks at bookboon.com

214

http://bookboon.com/

Object Oriented Programming Using Java Case Study

The next two images show the pop up dialogues that appear when the ‘Find Client” button is pressed.
Firstly asking for a client ID...

Input % .

Enter chent ID
lsK |

| OK || Cancel‘

Secondly displaying the client details — assuming a client with this ID has been added.

Message]

Client name: Simon
Address: room 217
Phone: x2756
Curremnt credit: 10

s @bookK 1s probucen with iText®

Download free eBooks at bookboon.com &\S«\

215

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

The ‘Display Messages’ button shows each of the messages on the screen that should be display using the
DummyBoard class. This is only crudely simulating a real display board and makes no effort to scroll

the messages or display them in any graphically interesting way.

‘Purge Messages’ invokes the purgeMessages() method. It does nothing visible but decrements the days
remaining for each message, decreases the clients credits and deletes the messages if appropriate. This

can be tested by running Find Client before and after doing a daily purge.

11.17 Summary

The fundamental principles of the Object Orientated development paradigm are

« abstraction
« encapsulation
« generalization/specialization (inheritance)

o polymorphism

These principles are ubiquitous throughout the Javalanguage and library package APIs as well as providing

a framework for our own software development projects.

A well-established range of tools and reference support is available for OO development in Java, some

of it allied to modern ‘agile’ development approaches.
Throughout this chapter youwillhopefullyhave seenhow Object Orientation supports the programmer by:-

« using abstraction and encapsulation to enables us to focus on and program different parts of
a complex system without worrying about ‘the whole.

« using inheritance to ‘factor out’ common code

+ using polymorphism to make programs easier to change

o using tools help document and manage large software projects.

This has been exemplified using Java but the same principles and benefits apply to all OO programming

languages and the tools demonstrated here are available in many modern IDE’s.

Through reading this book, and doing the small exercises, you will hopefully have gained some

understanding of these principles.

I hope you have found this book helpful and I wish you all the best for the future.

